Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry
نویسندگان
چکیده
Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples.
منابع مشابه
An optimal peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using mixture similarity measure
MOTIVATION Comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-MS) brings much increased separation capacity, chemical selectivity and sensitivity for metabolomics and provides more accurate information about metabolite retention times and mass spectra. However, there is always a shift of retention times in the two columns that makes it difficult to compare metabolic pro...
متن کاملA Two-stage Peak Alignment Algorithm for Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry-Based Metabolomics
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC/TOF-MS) has been applied to metabolomics analyses recently. However, retention time shifts in the two-dimensional gas chromatography will introduce difficulty to compare compound profiles obtained from multiple samples. In this work, a novel two-stage peak alignment algorithm has been developed...
متن کاملR2DGC: Threshold-free peak alignment and identification for 2D gas chromatography mass spectrometry in R.
Summary Comprehensive two dimensional gas chromatography-mass spectrometry is a powerful method for analyzing complex mixtures of volatile compounds, but produces a large amount of raw data that requires downstream processing to align signals of interest (peaks) across multiple samples and match peak characteristics to reference standard libraries prior to downstream statistical analysis. Very ...
متن کاملSystems biology R2DGC: Threshold-free peak alignment and identifica- tion for 2D gas chromatography mass spectrometry in R
Summary: Comprehensive two dimensional gas chromatography-mass spectrometry is a powerful method for analyzing complex mixtures of volatile compounds. This method produces a large amount of raw data that requires downstream processing to align signals of interest (peaks) across multiple samples and match peak characteristics to reference standard libraries prior to downstream statistical analys...
متن کاملA New Method of Peak Detection for Analysis of Comprehensive Two-dimensional Gas Chromatography Mass Spectrometry Data.
We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013